屋子里,徐云正在侃侃而谈:
“艾萨👲🌯🂪克先生,韩立爵士计算发现,二项式定理中指数为分数时,可以用e^x=1+x+x^2/2!+x^3/3!+……+x^n/🃕🗬🞫n!+……来计算。”
说着徐云拿起笔,在纸上写下了一行字:
当n=0时,e^x>1。
“🗱🝰艾萨克先生,这里是从x^0开始的,用0作为起点讨论比较方便,您可以理解吧?”
小牛点了点头,示意自己明白。
随后徐云继续写道:
假设当n=k时🙈🈗⚉结论成🃱🛤🞗立,即e^x>🀞♢1+x/1!+x^2/2!+x^3/3!+……+x^k/k!(x>0)
则e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^k/k!]🐸🄫🀠>0
那么当n=k+1时,令函数f(⛚🛁🙞k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+🌁……+x^(k+1)/(k+1)]!(x>🕡0)
接着徐云在f(k+1)上画了个圈,问♐道:
“艾萨克先生,您对导数有了解么?”
小牛继续点了点头,言简意赅的♱蹦出两个字:
“了解。”
学过数学的朋友应该都知道。